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We apply the distinction between parameter independence and outcome inde- 
pendence to the linear and nonlinear models of a recent nonrelativistic theory of 
continuous statevector reduction. We show that in the nonlinear model there is 
a set of realizations of the stochastic process that drives the statevector 
reduction for which parameter independence is violated for parallel spin compo- 
nents in the EPR-Bohm setup. Such a set has an appreciable probability of 
occurrence (~  1/2). On the other hand, the linear model exhibits only extremely 
small parameter dependence effects. The final section discusses the difficulties of 
finding a relativistic generalization of a parameter-dependent nonrelativistic 
theory. We identify this difficulty precisely and show how the weak parameter 
dependence of the linear model avoids it, provided one uses an appropriate 
criterion for the existence of definite outcomes. 

1. N O N L O C A L I T Y ,  P A R A M E T E R  D E P E N D E N C E ,  A N D  

O U T C O M E  D E P E N D E N C E  

As is well known,  the pr inc ipa l  local i ty  a s sumpt ion  needed to p rove  
Bell 's  t heo rem for the s tochast ic  case (Bell,  1971) is equivalent  to the 
con junc t ion  o f  two o ther  assumpt ions ,  viz., in Sh imony ' s  t e rminology ,  
p a r a m e t e r  independence  and  ou tcome  independence  (Suppes  and  Zanot t i ,  
1976; van Fraassen ,  1982; Jarre t t ,  1984; Shimony,  1984). In  view o f  the 
exper imenta l  v io la t ion  o f  the Bell inequal i ty ,  one has to give up ei ther  or  
bo th  o f  these assumpt ions .  
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The aim of this paper is to investigate which of these assumptions is 
given up by some recent models of statevector reduction. In particular, we 
will focus on parameter dependence. We will show that one of these models 
(in which the evolution of the statevector is governed by a nonlinear 
equation) exhibits appreciable parameter dependence effects, while the 
corresponding linear model does not. This is an important issue, since, as 
we will argue in Section 4, parameter dependence of a nonrelativistic theory 
prevents a genuinely relativistic generalization. [This paper abbreviates a 
previous paper by Ghirardi et al. (1993).] 

To start with, let us fix our notation. We will denote by 2 all 
parameters (which may include the quantum mechanical statevector or 
even reduce to it alone) that completely specify the state of an individual 
physical system. For simplicity we will refer to a standard EPR-Bohm 
setup and we will denote by 

pLR(x, y; n, m) (1.1) 

the joint probability of getting the outcome x (x = + 1) in a measurement 
of the spin component along n at the left (L) and y (y = _1) in a 
measurement of the spin component along m at the right (R) wing of the 
apparatus. We assume that the experimenter at L can make a free-will 
choice of the direction n; and similarly for the experimenter at R and the 
direction m. Both experimenters can also choose not to perform the 
measurement. 

Bell's locality assumption can be expressed as 

pLR'x --" n m) pL(x; n, *)pR(y; *, m) (1.2) 2 ~ , Y ,  , = 

where the symbol * appearing on the r.h.s, denotes that the corresponding 
measurement is not performed. Condition (1.2) has been shown (Jarrett, 
1984; Shimony, 1984) to be equivalent to the conjunction of two logically 
independent conditions: 

pL(x; n, m) =pL(x; n, *) 
(1.3a) 

pR(y; n, m) =p~(y ;  *, m) 

and 

pLR(x, y; n, m) L X = p ; . ( ; n , m ) p R ( y ; n , m )  (1.3b) 

where we have denoted, e.g., by the symbol pL(x; n, m) the probability of 
getting, for the given settings n, m, the outcome x at L. 

Conditions (1.3a) express parameter independence, i.e., the requirement 
that the probability of getting an outcome at L (R) is independent of the 
setting chosen at R (L), while equation (1.3b) (outcome independence) 
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expresses the requirement that the probability of an outcome at one wing 
does not depend on the outcome obtained at the other wing. 

This "splitting" of the locality requirement into two independent 
conditions is particularly useful for discussing their different conceptual 
implications with respect to relativity. In fact [as proved most fully by 
Jarrett (1984)], if conditions (1.3a) were violated, and one could control the 
variables 2, one could send faster-than-light signals from R (L) to L (R). 
On the other hand, if only condition (1.3b) is violated, then faster-than- 
light signaling cannot be achieved since the stochastic outcome at a wing 
cannot be controlled by the experimenter. 

As is well known, this splitting also gives a useful contrast between 
standard quantum mechanics (i.e., under the assumption that the statevec- 
tot ]W) is the complete state 2) and pilot wave theories, in particular that 
of Bohm (1952). Thus, standard quantum mechanics exhibits parameter 
independence [a special case of the "no-signaling theorem" (Eberhard, 
1978; Ghirardi et al., 1980, 1988) and outcome dependence. But for the 
pilot wave theory, the situation is reversed: there is outcome independence 
and parameter dependence (Butterfield, 1992, pp. 60-63). [Quantum statis- 
tics and, in particular, the no-signaling theorem are recovered at the 
phenomenological level by averaging over the controllable precise positions 
of the particles (Holland and Vigier, 1988, pp. 745ff).] Indeed, in any 
deterministic theory (i.e., one for which the range of each of the above 
probabilities is the set {0, 1 }) there cannot be outcome dependence, so that 
violation of the locality requirement (1.2) implies parameter dependence. 

Here we set aside "apparatus microstates"--features, /~L and /~R, say, 
of the L and R apparatuses that are not included in 2 but do affect the 
probabilities of results. Of course some authors [especially Jarrett (1984)] 
allow for these. So they write probabilities p~2R(x, y; ripE, re#R) and then 
have a decomposition like that of (1.2) into (1.3a) and (1.3b), but at each 
value of #L and #R" Considering these probabilities raises some interesting 
questions (Bell, Shimony et al., 1985). But following Shimony (1984), we 
think it is reasonable to assume we can define "surface" probabilities by 
averaging over the microstates, and so to consider (1.2), i.e., (1.3a) and 
(1.3b), as the locality condition. Accordingly, we set aside apparatus 
microstates in what follows. 

2. A CONCISE REVIEW OF DYNAMICAL REDUCTION MODELS 

Models have recently been developed which, by using stochastic 
modifications of Schr6dinger's dynamics, imply wave packet reduction 
with definite pointer positions in measurement processes. More generally, 
they forbid the persistence of linear superpositions of macroscopically 
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distinguishable states, and do so without violating any established experi- 
mental facts. 

The first model of this kind, quantum mechanics with spontaneous 
localizations (QMSL) (Ghirardi et  al., 1986; Bell 1987a), is based on the 
assumption that, besides the standard evolution, physical systems are 
subjected to spontaneous localizations occurring at random times and 
affecting their elementary constituents. Such processes, which we call 
"hittings," are formally described as follows. When the ith constituent of 
the system suffers a hitting the wave function changes according to 

W ( r , , . . . ,  rN) --' Wx(rl . . . .  , rN) = ~ x ( r l , . . . ,  rN)/ll*x I[ 
(2.1) 

O x ( r l , . . . ,  ru) = exp[-  (~/2)(ri --x)2]~(rl . . . .  , rN) 

Such processes occur at randomly distributed times with a mean frequency 
2 = 10-16 sec-1. The probability density of the process occurring at point 
x is given by [l~x][ 2. The localization parameter 1/~/~ is assumed to take 
the value 10- s cm. 

The QMSL mechanism does not respect the symmetry properties of 
the wave function in the case of identical constituents. Its generalization, 
continuous spontaneous localization (CSL), does so, and has been pre- 
sented and discussed in various papers (Pearle, 1989; Ghirardi et  al., 1990a; 
Ghirardi and Rimini, 1990). At the nonrelativistic level, there are two 
formulations of CSL which are equivalent from a physical point of view. 
However, they turn out to exhibit quite different nonlocal features. So to 
present our argument, we first need the details of these two formulations of 
CSL, which we call "the linear CSL model" and "the nonlinear CSL 
model," respectively. 

2.1. The Linear CSL Model 

The model is based on a linear stochastic evolution equation for the 
statevector. The evolution does not preserve the norm, but only the average 
value of the squared norm. The equation is 

In equation (2.2), the quantities Ai are commuting self-adjoint operators, 
while the quantities wi (t) are c-number Gaussian stochastic processes with 
a probability density of occurrence 

Pcook [w] = P.aw [w] II Iq'w(t) > II 2 (2.3) 
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In equation (2.3), PRaw[W] is the "raw" probability density for the Gaussian 
process w in the interval (0, t), namely (with N a normalization factor) 

P~aw[W] = _~ exp - & w~ (3) (2.4) 

that is, the probability density for a white noise satisfying 

( ( w i ( t ) ) )  = o,  ( ( w , ( t ) w j ( t ' ) ) )  = ~ 6 ~ 6 ( t  - t ' )  (2.5) 

We assume, for the moment, that the operators Ai have a purely discrete 
spectrum and we denote by P~ the projection operators on their common 
eigenmanifolds. 

The physical meaning of the model is made precise by the following 
prescription: if a homogeneous ensemble (pure case) at the initial time t = 0 
is associated with the statevector ]W, 0), then the ensemble at time t is the 
union of homogeneous ensembles associated with the normalized vectors 
IVw(t))/ll IVw(t))[I, where [q~w(O) is the solution of equation (2.2) with the 
assigned initial conditions and for the specific stochastic process w which 
has occurred in the interval (0, t). 

For our concerns, the relevant feature of the dynamical process (2.2) 
with the prescription (2.3) is that it drives the statevector of each individual 
member of the ensemble into one of the common eigenmanifolds of the 
operators A~, with the appropriate probability. To make this clear, we 
consider a simplified case in which only one operator A appears in equation 
(2.2). The solution of this equation corresponding to the particular initial 
condition (involving only two eigenmanifolds of A with eigenvalues a, t )  

IW, 0> = P~ IW, 0> + P~ IW, 0> (2.6) 

when the Hamittonian is disregarded, is 

]Wa (t)) = e ~B(') - ~ Z r t p ~  [tF, 0) + e/~B(~ - a2r'P a ]W, 0) (2.7) 

Here B(t) is the Brownian process 

B(t) = & w(~) (2.8) 

and we have changed notation from [tgw(t)) to [tFB(t)) in order to stress 
the fact that the state at time t does not depend on the particular sample 
function w(v) in the interval (0, t), but only on its integral B(t) of equation 
(2.8). 

Taking into account equation (2.8) and the cooking prescription, one 
gets the cooked probability density for the value B(t) of the Brownian 
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process at time t: 

PCook [B(t)] = PRaw [n(t)] [I IkI'JB (0 > [I 2 

1 Pcook[a(t)] = IIP~ ItI J, 0> II 2 (2r~et) ,/2 e -o/2ro[s(o- 2~y,] 2 

1 
+ [Ifr iW, 0)112 (2rcyt)1/i e -(1/2rots(t)- 2&tl 2 (2.9) 

From (2.9) it is evident that for t ~ ~ ,  the Brownian process B(t) can 
assume only values belonging to an interval of width (Vt)1/2 around either 
the value 2~7t or the value 2flTt. [Although the spread (701/2 tends to oo for 
t ~ 0% its ratio to the distance 2 ( ~ -  fl)Vt between the two peaks of the 
distribution tends to zero.] The corresponding probabilities are I 0>112 
and Ile~l~', 0>11 =, respectively. The occurrence of a value near to 2 ~ t  for 
the random variable B(t) leads, according to equation (2.7), to a statevec- 
tor that, for t ~ ~ ,  lies in the eigenmanifold corresponding to the eigen- 
value ~ of A. In fact, one gets 

liRa I'I'.(t) >l[=~ --2yt(=--]~)2 HP/~i kI/, o>ll 2 
liP= I .(t)>ll = liP= 0>11 z , . 2  0 (2.10) 

Analogously, when the random variable B(t) takes a value near to 2~7t, for 
t ~ ~ ,  the state vector is driven into the eigenmanifold corresponding to 
the eigenvalue/7 of A. 

It is then clear that the model establishes a one-to-one correspondence 
between the outcome (the final "preferred" eigenmanifold into which an 
individual statevector is driven) and the specific value (among the only ones 
having an appreciable proability) taken by B(t) for t ~ ~ ,  a correspon- 
dence irrespective of what iW, 0> is, provided only that it has nonzero 
amplitudes for each eigenmanifold. In the general case of several operators 
Ai, a similar conclusion holds for the outcomes ~i of A~ and the correspond- 
ing Brownian processes B~(t). 

This concludes the exposition of the linear CSL model. Obviously, to 
give a physical content to the theory one must choose the so-called 
preferred basis, i.e., the eigenmanifolds on which reduction takes place or, 
equivalently, the set of commuting operators A i. The specific form that has 
been presented and shown to possess all the desired features (Pearle, 1989; 
Ghirardi et al., 1990a; Ghirardi and Rimini, 1990) is obtained by identify- 
ing the discrete index i and the operators Ai of the above formulas with the 
continuous index x and the operator 

N(x) =\'~-~,] ~ fdqe-('12)('-')Za+(q,s)a(q,s) (2.11) 
Here a+(q, s) and a(q, s) are the creation and annihilation operators of a 
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particle at point q with spin component s, satisfying the canonical commu- 
tation or anticommutation relations. Correspondingly, one has a continu- 
ous family of  Gaussian stochastic processes satisfying 

((w(x, t))) = 0, ((w(x, t)w(y, t '))) = 76(x - y)6(t - t ') (2.12) 

The parameter ~ is assumed to take the same value (101~ cm -2) as in the 
case of  QMSL, while 7 is related to the frequency 2 = 1 0  - 1 6  s e e  - 1  of that 
model according to 7 = 2(4~/~) 3/2. 

2.2. The Nonlinear CSL Model 

It is possible to reformulate the theory so that the stochastic process 
w(t) is subject to the raw probability given by equation (2.5). When one 
does this, one finds that the normalized state vector obeys the nonlinear 
stochastic equation 

d]~w(t))dt = I - h  H + ~i (A i - - (A i ) )w i ( t )  - ]; 2i ( A i - - ( A i ) ) 2  

+ ~ Z (<A,~) - <a,>2)] [Vw(t) > (2.13) 
i A 

where 

(Ai)  = (Ww(t)]Ai I~w(t)) (2.14) 

It is easy to prove that the two models are equivalent in the following 
precise sense: for the same initial condition and for any time t, the 
statistical ensembles generated in the two cases are composed of suben- 
sembles, having corresponding weights equal, of  systems which went 
through the same history in the interval (0, t). 

We recall that, as in the linear CSL model, for t ~ oo the non-Hamil- 
tonian part of  the dynamics drives the statevector into one of the common 
eigenmanifolds of the operators Ai. However, for a single realization of the 
stochastic process w(t), equation (2.13) can lead to a final statevector lying 
in a different eigenmanifold, depending on the initial condition I~, 0). 

2.3. Outcomes in Dynamical Reduction Models 

Due to the choices of the parameters for QMSL and for the two 
models of CSL, these dynamics have the following nice features: for 
microscopic systems the non-Hamiltonian terms have negligible effects, 
while for macroscopic systems, the reduction mechanism rapidly suppresses 
superpositions of  states in which a macroscopic number of  particles are 
displayed by more than the characteristic localization length. In particular, 
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within CSL the quantity (~t - /3)  2 which governs the damping turns out to 
be very large when one chooses (2.11) for the operators Ai, and therefore 
the suppression of the superposition occurs in a very small characteristic 
reduction time. 

Thus it is clear how such models overcome the difficulties of quantum 
measurement theory. One usually assumes that different eigenstates of the 
measured microquantity trigger (through the system-apparatus interaction) 
different displacements of a macroscopic pointer from its "ready" position. 
These models suppress, in extremely short times and with the appropriate 
probability, all but one of the terms in the superposition, so that a definite 
outcome of the measurement emerges (See also Benatti et al., 1987). 

However, for the analysis in Section 3, we need to emphasize three 
points about these outcomes. They all follow from one main feature of the 
models: that exact eigenstates of the operators Ai are not obtained in finite 
time. Thus, consider again our simplified example within linear CSL with 
just two outcomes ~ and /3 which we identify with the eigenvalues of an 
operator A, and with the initial statevector (2.6). We stress that, once we 
disregard the Hamiltonian evolution, at any finite time t, none of the states 
evolved from this initial statevector can be exactly an eigenstate of A- - a l -  
though after the characteristic reduction time At {defined through 
e x p [ - 2 ? A t ( ~ -  fl)2] ~ 1}, for all values of the Brownian process B(At) 
which have an appreciable probability of occurrence [i.e., those for which 
B(At) ~ 2a?At or B ( A t ) ~  2flTAt] the normalized statevector will have a 
negligible component on one of the two eigenmanifolds. Since one wants 
outcomes to emerge in the characteristic reduction time At, one must say 
that the "definite outcome ct" has occurred when llP IV>ll2/lllv>ll = is 
extremely close to 1: it need not exactly equal 1. (In standard quantum 
mechanics with the reduction postulate, one needs an analogous criterion 
for outcomes, since outcomes are in general related to positions of macro- 
scopic pointers and no wave function can have compact support in 
configuration space for longer than an instant.) 

We can now state our three points. The first is that, in principle, it 
could happen that even for a time larger than At no outcome has emerged. 
In fact, with the Brownian process B(At) .'= (~ +/3)~At, whose probability 
density, although very small, is not zero, one can easily show that equation 
(2.7) leads to a statevector which coincides, apart from a normalization 
factor, with the initial one. So no reduction has taken place and no 
outcome has been obtained. But we believe that since the probability of 
such a peculiar situation is extremely small, its occurrence is not a 
drawback of the theory. 

Another peculiar situation can occur, namely the "reversal" of an 
outcome. Thus, suppose one has a normalized statevector IW) which 
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"almost" belongs to the eigenmanifold M,, i.e., for which ]lP~lV)l] 2 is 
extremely close to 1, so that the outcome a has occurred. Nevertheless, 
there is a very small probability IIPe I,I,>l[ 2 that in the far future a value of 
the Brownian process B(t) occurs such that in the statevector (2.7) the 
norm of the second term becomes much greater than the first--so that the 
outcome fl occurs. (We stress that for an entangled statevector, such a 
reversal preserves the correlations implied by the statevector.) 

These two points hold within all the above models of dynamical 
reduction. But our third point is just about linear CSL. It is that the 
correspondence in Section 2.1 between the outcomes and the values taken 
by B(At) breaks down for finite times. Thus, consider the particular value 
B(At) ,= 2flTAt for the Brownian process at time At. Such a value, when the 
projections on M~ and M e of the initial state [W, 0) have comparable norm, 
would yield the outcome fl at this time. However, if at the initial time the 
two projections are so unbalanced that 

e2~at(~-e'2[llee]'e, 0>llZ/lleo I,i ,, 0>ll 1 (2.15) 

then at time At the outcome would be ~. Thus the correspondence in 
Section 2.1 is not strictly valid for finite times. However, we stress that 
when (2.15) holds, the probability of occurrence at time At of the value 
2fl~At for B(At) is extremely small. Therefore, identification at finite times 
of the outcomes with the values taken by the Brownian process is legitimate 
to an extremely high degree of accuracy. 

3. PARAMETER DEPENDENCE IN DYNAMICAL 
REDUCTION MODELS 

In this section we will investigate the two models of CSL from the 
point of view of parameter dependence [Bell (1987) investigates QMSL 
from this point of view; his conclusions match our conclusions about the 
linear model in Section 3,2 below, although his mathematical apparatus is 
very different.] As in Section 1, we consider an EPR-Bohm setup involving 
two macroscopic apparatuses at L and R devised to measure a L. n and 
aR.m,  respectively. We will assume that the micro-macro interactions 
taking place at L and R that trigger reduction are governed by appropriate 
coupling constants gL and gR. SO, to investigate whether there is parameter 
dependence, we will compare situations in which one of the coupling 
constants is made equal to zero (corresponding to no measurement being 
performed) with a situation in which it is nonzero. 

For both the linear and nonlinear models, the initial situation before 
any measurement is completely characterized by the initial statevec- 
tor I qJ, 0). The later situation is determined by the evolution equation 
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depending on gL and gR, together with a realization (sample function) 
w(x, t) of the stochastic process. The various realizations have a (nonepis- 
temic) probability of occurrence. In the nonlinear model, this is PRaw[W], 
which is independent of everything else, and, in particular, of the values 
taken by gL and gR. But in the linear model, this probability does depend 
on the values of gL and gR. This is due to the fact that the evolution of the 
statevector Iq j, 0) depends on the coupling constants and the statevector 
itself enters in determining the cooked probability density of the stochastic 
processes. As we shall see, this difference between the two models makes 
for very different behavior as regards parameter dependence. 

Strictly speaking, the evolution equation describing the whole process 
contains a Hamiltonian term describing the space propagation of the 
particles toward L and R, Hamiltonian terms with coupling constants gL 
and gR which describe the spin-apparatus interactions, and the reducing 
terms containing the stochastic process w(x, t). However, we will simplify 
our analysis: first, by disregarding the space propagation; second, by 
considering only those values of w that affect the reduction, i.e., the values 
for the spatial regions of the apparatuses and for the relevant time 
intervals. We will denote by w E and wR these restrictions of w. 

To further simplify the discussion, we assume that the initial state is 
the singlet state and we confine our attention to the case in which both spin 
measurements are in the same direction, i.e., n = m. We assume that the 
measurement at R, if it takes place (i.e., if gR r 0), occurs at an earlier time 
than the one at L. 

3.1. The Case of  the Nonlinear CSL Model 

With these simplifications, we can easily show that the nonlinear 
model is parameter dependent, without solving its evolution equation 
explicitly. The parameter dependence follows straightforwardly from the 
probabilistic independence of WL and WR. In fact, we can simplify further 
by setting aside the "no outcome" and "reversing an outcome" possibilities 
discussed in Section 2.3. Allowing for these would not affect the argument 
of this subsection: it would simply mean that some of this subsection's 
equalities hold only to an extremely high degree of accuracy. 

Assume that the initial statevector IV, 0) is the singlet state and 
consider the realizations ~L(X, t) of WL(X, t) that give rise to the outcome 
+ 1 for the left apparatus when it is triggered by ]qJ, 0). The probability of 

L 1 occurrence of such processes is 1/2. We will denote by PLy,0>( - ; gR = 0[WL) 
L 1" and Ply,0>(-- , gR :~ 0[WL) the conditional probability, given WL, of the 

outcome - 1 at left when the initial state is Iq j, 0) and the R apparatus is 
switched off or on, respectively. We then have 
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pjL 0>( -- 1; gR = 0]V~L) -- 0 (3.1) 

We now evaluate the probability P[V.0)(L __ 1; gR r 01~L). Since gR # 0 and 
the measurement at R occurs before the one at L, we have to take into 
account the possible realizations of the stochastic process at R. Let us 
consider the realizations fiR(X, t) of WR(X, t) that, when triggered by the 
singlet state, yield the outcome + 1 at R. When one of these processes fir  
occurs, the outcome at L turns out to be - 1 irrespective of the particular 
realization of the stochastic process WL and therefore also for all processes 
~L considered above. To understand this, recall the point at the end of 
Section 2.2: that within the nonlinear model, the same stochastic process at 
L can give rise to different outcomes, depending on the statevector which 
triggers the apparatus at L. As a consequence one has 

L Ply,0>( - 1; gR :~ 01WL & WR) = 1 (3.2) 

Since the probability of occurrence of a process WR iS equal to 1/2 and is 
independent of the particular realization #L, and since if WR is not one of 
the if'R, then outcome --1 on the left cannot occur (barring improbable 
exceptions), one has 

ppL o>( -- 1; gR # 0]~L) = 1/2 (3.3) 

We stress that the difference of the probabilities is appreciable, 

0 L l; gR ~ 0]~L) = 1/2 (3.4) = plq,.0) ( - -  l ;  gR = 011~L) L --/: P Iw,o> ( -- 

and that the probability of occurrence of these realizations kL is also 
appreciable ( =  1/2). Thus the nonlinear CSL model exhibits parameter 
dependence. 

3.2. The Case of the Linear CSL Model 

For the linear model, we can easily solve the evolution equation, and 
thereby show parameter independence in the t ~ oo limit, once we simplify 
the description by considering only the spin Hilbert space. This simpli- 
fication will not affect the issue of parameter independence, provided 
one correspondingly changes the value of the parameter 7 in such a way 
that reduction takes place within times characteristic for a macroscopic 
apparatus. 

Thus one has, in the case in which both apparatuses are switched on 
(gR r 0 and gL r 0), a linear dynamical equation analogous to (2.2): 

d]qJwe'wR(t)) -- {[( aL" n)wL(t) -- ?1 + [( aR" m)wR(t) -- 7]}[VwL,w~(t)) (3.5) 
dt 
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with 

((WL(t))) = 0; ((WR(t))) = 0; ((WL(t)wR(t'))) = y6L.R6(t -- t') (3.6) 

The probability distribution of  the stochastic processes is obtained through 
the cooking procedure. To compare this case with the one in which gR = 0, 
one has to consider another stochastic equation, i.e., 

dlVw~(t) ) _ {(aL. n)WL(/) -- "~}l~FwL(t)) (3.7) 
dt 

The solutions of equations (3.5) and (3.7) at time t for the same initial 
conditions are 

IWBL,BR(t)) = exp[FLBL(t)] exp[FRBR(/)] lUd, 0)  (3.8) 

and 

[~BL(t) > = exp[FLBL(t)] [W, 0> (3.9) 

respectively. [In equation (3.8) and following, we change notation for the 
same reason as we did in equation (2.7).] In equations (3.8) and (3.9) we 
have put 

FLBL (t) = a t .  nBL(t) -- yt; 

where 

fo BL(t ) = dr WL(Z), 

FRBR(t) = a R" nBR(t ) -- yt (3.10) 

Brt(t) = dr WR(Z ) (3.11) 

We come back now to equation (3.5) and we evaluate the cooked 
probability density of  occurrence of  the Brownian processes BL(t) and 
BR(t) by multiplying the raw probability density by the square of  the norm 
of the statevector (3.8). As usual we have 

PCook[nL(t) & OR(/)] ----- eRaw[nL(t) t~, nR(t)] II IVB:R(t)>I] = (3.12) 

and 

eRaw[nL (t) t~ BR(t)] ----- PRaw[gL (t)]eRaw[BR ( t)] (3.13) 

Taking into account equation (3.8), one then gets from (3.12) 

Pcook[BL(t) & BR(t)] 

= PRaw[BL(t)]PRaw[BR(t)] I1 iW~L,eR(t) )II = 

= PRaw[BL(t)] ][exp[FLBL(t)] Iq u, 0)[[2 

exp[FRBR(t)] exp[FLBL(t)]IW, 0)  2 
• PRaw[BR(t)] exp[FeBL(t)]lW, 0)  1 (3.14) 
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Let us consider the marginal cooked probability density of BL(t): 

P&ok[BL(t)l 

= (d[BR(t)] Pcook[BL(t) & BR(t)] 
,] 

= Pr~aw[BL(t)] Ilexp[FLB L(t)] [ue, 0> [t 2 

x fd[BR(t)] PRaw[BR(t)] exp[FRBR(t)] exp[FL"L(t)]]tP' 
exp[FLBL(t)] IV, 0) 0) 2 (3.15) 

Since the equation 

dlUdwR(t)) -- {(or R �9 n)wR(t) -- 7}]~,~R(t)) (3.16) 
dt 

preserves the stochastic average of thesquare of the norm of the statevec- 
tor, the last integral in equation (3.15) takes the value 1. This means that 
Pffook[BL(t)] turns out to equal Pcook[BL(t); *], i.e., the cooked probability 
density of occurrence of the Brownian process BL(t) for the same initial 
condition if the process were described by equation (3.7), i.e., if the 
apparatus at R were switched off. 

But now recall from Section 2.1 that within linear CSL there is a 
one-to-one correspondence between the outcome at left (right) at t = ov 
and the specific value taken by the Brownian process BL(t): [BR(t)] for 
t -o o0. So the above proof that P~ook[BL(t)] equals Pcook[BL(t); *] amounts 
to a proof that linear CSL exhibits parameter independence at the t = oe 
limit. 

As we discussed in Section 2.3, when one considers a finite time t of 
the order of or greater than the characteristic reduction time At, the 
situation is more complicated: the one-to-one correspondence between the 
outcomes and the values taken by the Brownian process is only approxi- 
mate (though valid to an extremely high degree of accuracy). As a 
consequence, linear CSL does not enjoy strict parameter independence at 
finite times. To clarify this point, consider the values BL(t)= 27t and 
BR(t) = 47t for the Brownian processes at time t. The cooked probability 
density of occurrence of such values at the finite time t, though extremely 
small, is not exactly zero. Going through arguments similar to those of 
Section 2.3, one could show that these values lead, through equation (3.8), 
to a statevector at t which corresponds to the outcomes + 1 at right and 
- 1  at left, respectively. On the other hand, for the case in which gR = 0, 
the substitution of BL(t)=2yt in equation (3.9) leads, at time t, to a 
statevector corresponding to the outcome + 1 at left. Thus, there are values 
of the Brownian process BL(t) for which the outcome at left depends on 
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whether gR is equal to zero or not. So there is parameter dependence at the 
level of individual B(t)'s. However, given BL(t), this happens only for 
values BR(t ) of the Brownian process at right such that the cooked 
conditional probability Pcook[Br~(t)lBL(t)] is extremely small. This in turn 
implies that the model exhibits only negligibly small parameter dependence 
effects. 

To conclude, although the linear CSL model exhibits parameter de- 
pendence at finite times, these effects are extremely small compared with 
what happens for the nonlinear CSL model. In the next section, we discuss 
how this difference affects the prospects of a relativistic generalization. 

4. PARAMETER DEPENDENCE AND RELATIVISTIC 
INVARIANCE REQUIREMENTS 

First of all, we must stress that in both the linear and nonlinear models 
(and indeed in QMSL), one cannot take advantage of the parameter 
dependence for superluminal communication--simply because each of 
these models recovers the quantum mechanical no-signaling theorem (see 
end of Section 1) at the ensemble level by averaging over the realizations of 
its stochastic processes. 

However, if a nonrelativistic theory is parameter dependent, there are 
grave difficulties in giving what we will call a genuinely relativistic general- 
ization. Here we understand "genuinely relativistic" rather strongly: it 
excludes theories (like Lorentz's classical electromagnetic theory, or the 
quantum field theory version of the de Broglie-Bohm pilot wave theory) 
that have a preferred frame which cannot be discovered by experiments. 
We favor genuinely relativistic theories. [We recall that Bell, despite his 
deep appreciation of the de Broglie-Bohm theory, believed that to make 
the Lorentz group phenomenological in this way "is an incredible position 
to take-- I  think it is quite logically consistent, but when one sees the 
power of the hypothesis of Lorentz invariance in modern physics, I think 
you just can't believe in it" (Bell, 1989, p. 13).] So we will first give a 
general description of these difficulties, and then consider the nonlinear and 
linear models. 

We consider a theory formulated in a Galilean context in which there 
is an absolute time order and in which future events cannot influence past 
events. As a consequence, even though the theory exhibits parameter 
dependence, the setting of the parameters can only influence future events. 
We again consider an EPR-Bohm setup with measurements of spin compo- 
nents and we assume that the R measurement takes place before the L 
measurement, i.e., tR < tL. Starting from a given reference frame O, we 
assume that there are values of the parameter 2 that have a nonzero 
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probability of occurrence and are such that 

pj.L (x., n, m) v~p~(x; n, *) (4. la) 

while 

p~.R (y,. n, m) = pR(y;  *, m) (4.1b) 

Of course, since the theory is Galilean, we cannot discuss full Lorentz 
invariance for it. But there is a residue, or an analog of Lorentz invariance 
which can be considered. Thus if the two regions R and L are very far 
apart from each other, there are reference frames (say, O') moving even 
very slowly with respect to O, for which the temporal order of the 
measurement events (R, tR) and (L, tL) is reversed, i.e., t [  > t [ .  Since the 
probability of occurrence of an event is an objective fact (i.e., it cannot 
depend on the reference frame considered), it must hold also for O'  that 

t L /  / .  ~ / L  / .  / :~)  Cp~. (x , n ,  p~: t x ,  n ,  m') (4.2) 

where 2' is the parameter which identifies for O' the systems which are 
identified by 2 for O, and the primes on p, x, n, and m have an obvious 
meaning. [So (4.2) merely says that both observers can look at the same 
systems and agree on the objective probabilities.] However, as already 
remarked, for O', one has tk > t~. If  the theory were invariant for the 
O - O '  transformation, an analogous situation would occur also for the 
observer O for some values of 2. But this contradicts assumption (4.1a) 
expressing that for O the past cannot have a parametric dependence on the 
future. So in this sense, there cannot be a genuinely relativistic generaliza- 
tion of a parameter-dependent theory. 

This argument is readily applied to the nonlinear CSL model. Using 
again the notation of Section 3.1, we look at the experiment from a 
reference frame in slow motion with respect to O, for which the event 
(L, tL) precedes (R, tR). Consistency of the probabilities of  the outcomes 
implies that 

t t  . ~ / PI~".O>(--I'gRr CPw,0>'L (--1;gR =0[•[)  (4.3) 

where r?[(x', t') = r?L(A-l(x',  t')) even though, according to O', the mea- 
surement at right occurs later than the measurement at left. So if the model 
was invariant for the O - O '  transformation, there would be instances in 
which the same situation would occur for observer O - - s o  that for O an 
event could influence the outcome of a process which precedes it, contra- 
dicting the nonlinear model's absolute time order. Thus we conclude that 
the nonlinear CSL model is not a good starting point for building up a 
genuinely relativistic model of dynamical reduction. In fact, as discussed 
elsewhere (Ghirardi et al., 1990c), any such attempt meets difficulties (such 
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as the dynamical equation being nonintegrable) which are the technical 
counterpart of the argument above. 

So what about linear CSL? First of all, we stress that there is a 
genuinely relativistic generalization [which we call relativistic linear CSL 
(Pearle, 1990; Ghirardi et al., 1990b)] of this model, in spite of the fact 
(Section 3.2) that it exhibits (extremely small) parameter-dependent effects. 
To clarify how this can happen, we first need to recall a criterion for the 
existence of elements of physical reality in a system that is appropriate in 
a relativistic context. 

Within the scheme of quantum field theory let A be a local observable 
(corresponding to a Lorentz scalar) with a discrete eigenvalue ~ and P~ at 
projection operator on the corresponding eigenmanifold M~. As is well 
known, the assumption that wave packet reduction occurs in each reference 
frame along t = const hyperplanes (which is an invariance requirement) 
implies that the value IIP~IV>IL 2 varies appreciably between relatively 
moving observers (Bloch, 1967; Hellwig and Kraus, 1970; Aharonov and 
Albert, 1980). So there is a threat that different observers disagree about 
the objective matter of whether there is an "element of physical reality" 
corresponding to the value e of the local observable A. However, a 
criterion that overcomes this threat has been introduced in work on 
relativistic linear CSL. According to this criterion, an element of physical 
reality corresponding to the value e of the local observable A exists only 
when IlP l ,>ll 2 is extremely close to 1 for all observers. As shown in 
(Ghirardi et al., 1990b,c), the dynamics of relativistic linear CSL, taken 
together with this criterion, implies that macroscopic objects almost always 
have definite macroscopic properties. 

Let us now apply this criterion to a case of parameter dependence in 
our EPR-Bohm setup. As before, let ~L & ~3R be such that the L outcome 
is + 1 or - 1  according as gR is zero or not; for O, the R measurement 
(R, tR) happens before the L measurement (L, tL), while for O', (L, tL) 
precedes (R, tR); and we consider a case in which gp, is nonzero. According 
to our criterion, O and O' agree in saying that no definite outcome has 
been obtained at left, since ]]P+LIV>]I2~0, while IIP'+LIv'>I[2  1. This 
peculiar situation, that a measurement gives no definite outcome, is very 
improbable, since linear CSL exhibits only extremely small parameter- 
dependent effects (Section 3.2). And of course, nonrelativistic dynam- 
ical reduction models also allow this situation, again with very low proba- 
bility (this was the first of Section 2.3's three points). Accordingly, 
we believe that allowing this situation is not a drawback of relativistic 
linear CSL. 

To conclude: we have argued that the extremely weak parameter 
dependence of the linear model enables it to have a genuinely relativistic 
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generalization, once we use an appropr ia te  criterion for  the existence o f  
definite outcomes.  
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